

DiffPoseTalk: Speech-Driven Stylistic 3D Facial Animation and Head Pose Generation via Diffusion Models

Zhiyao Sun¹, Tian Lv¹, Sheng Ye¹, Matthieu Lin¹, Jenny Sheng¹, Yu-Hui Wen², Minjing Yu³, Yong-Jin Liu¹ ¹BNRist, Tsinghua University, ²Beijing Jiaotong University, ³Tianjin University

Overview Template Noise **One-to-Man** DiffPoseTalk Generati Style Feature Generated Reference Animations

DiffPoseTalk introduces a novel diffusion-based system for generating speech-driven facial animations and head poses, featuring example-based style control through contrastive learning. It overcomes the scarcity of 3D talking face data by utilizing reconstructed 3DMM parameters from a newly developed audio-visual dataset, enabling the generation of diverse and stylistic motions.

Background

Speech-driven facial animation generation has broad applications in education, entertainment, and virtual reality. However, there remain several challenges that have not been well addressed:

Many-to-many mapping between speech and motion

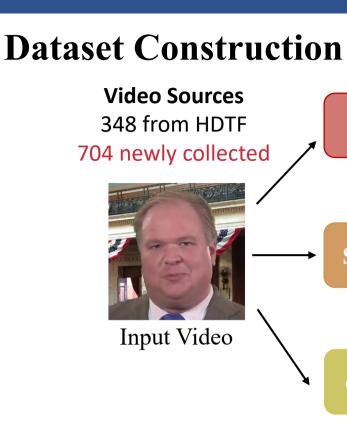
- A mouth shape may correspond to several sound, and vice versa. This mapping is further influenced by factors such as identity and speaking style. Non-verbal actions also exhibit a high degree of randomness.
- Previous methods mostly model this as a **regression** task, which is not suitable enough. The generation is deterministic and suffers from the "regression-tomean" problem. This also hinders the ability to generate non-verbal movements and natural head movements.

Style control

- Speaking style is a multifaceted attribute that is difficult to quantify.
- Existing methods primarily adopt "one-hot identity labels" as style conditions, which are limited to the training set.

Lack of large-scale 3D facial animation dataset

Collecting such data requires professional devices and Ο is time-consuming. Thus, existing datasets have limited coverage of identities, styles, and head motions.



We collect a new audio-visual dataset, featuring video clips from lectures, online courses, interviews, and news programs, thereby capturing a wider array of speaking styles and head movements. State-of-the-art 3D face reconstruction and pose estimation methods are used to predict accurate, expressive, and smooth facial animations.

Speaking Style Encoder

We have an important observation: the short-term speaking styles of the same person at two proximate times are often similar.

Therefore, we employ **contrastive** learning and use the InfoNCE loss to train the speaking style encoder. The encoder can extract implicit style features from any motion sequence.

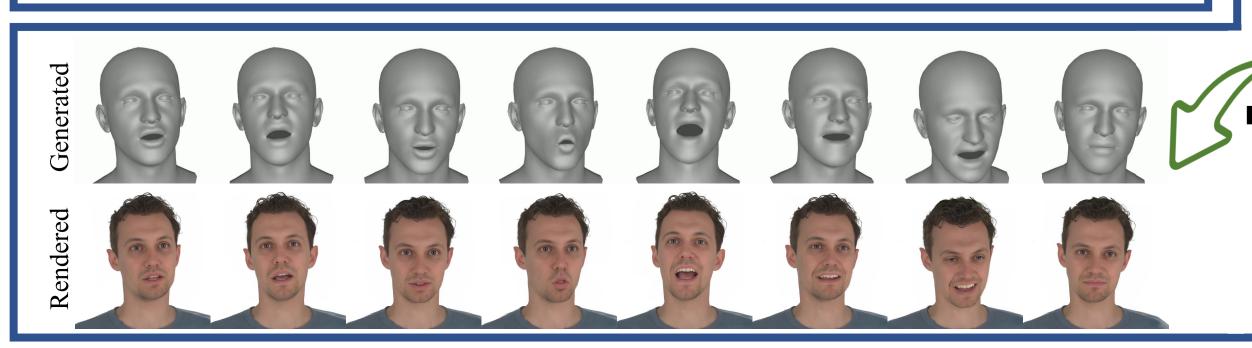
Raw Speech

previous window

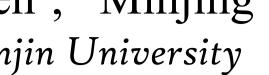
Denoising Network

- A HuBERT encoder a_{-T_p} . for robust speech feature extraction
- A transformer decoder for iterative denoising
- Designs

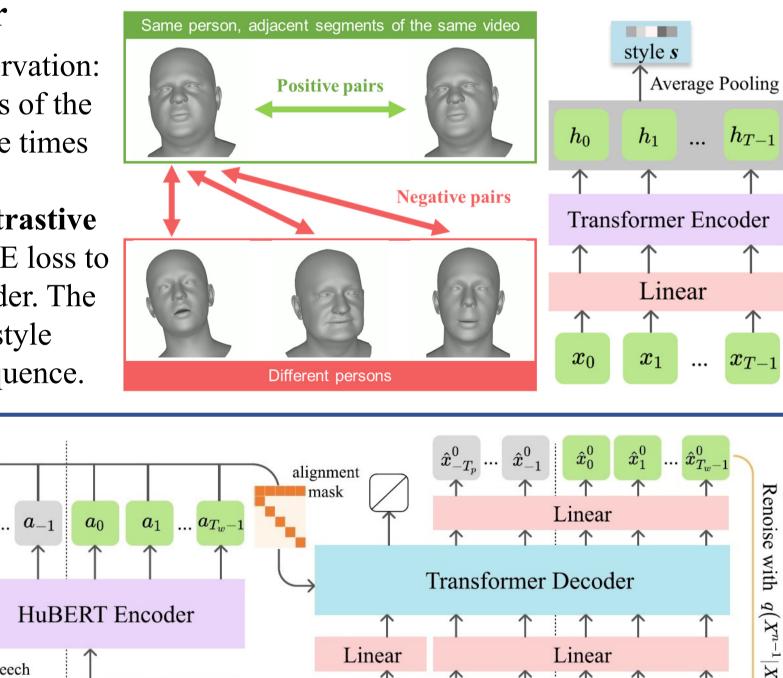
 - A windowing strategy for arbitrary length generation



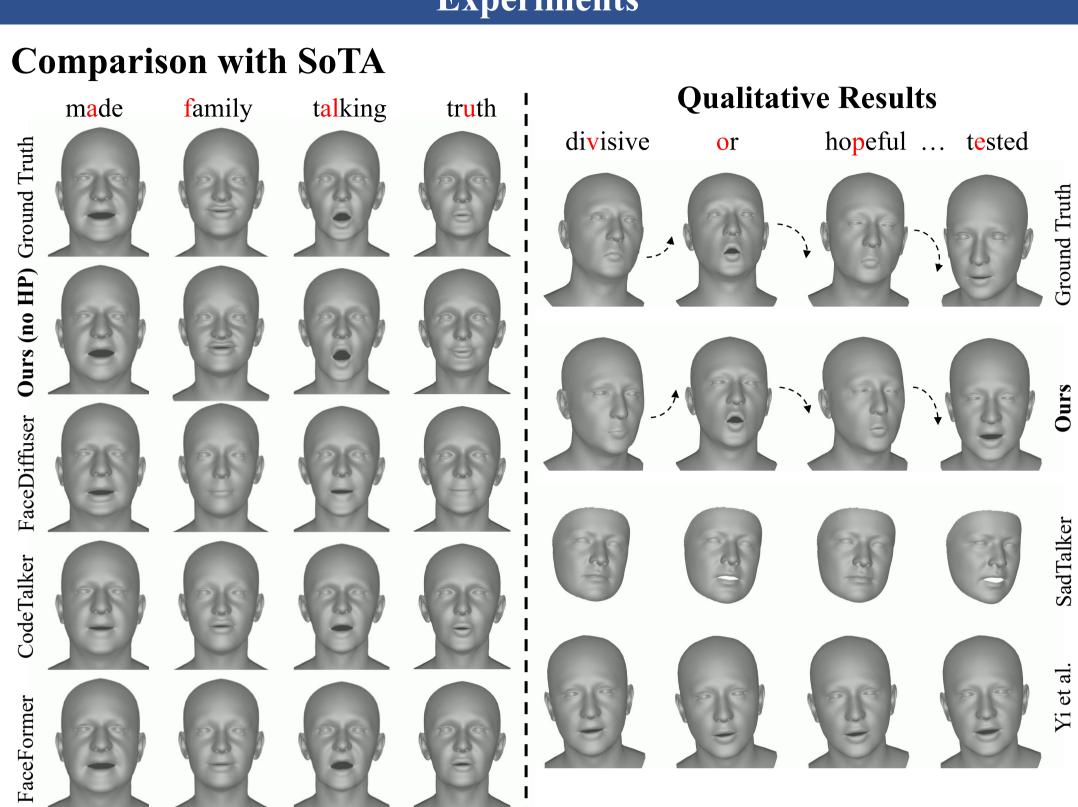
current window



Method ✓ Accurate MICA Expressive Smooth Savitzky-Golay Filter Expression & jaw Reconstruction Head pose



• Prediction of clean samples rather than noise to enable precise geometric constraints • An alignment mask to ensure proper alignment of the speech and motion modalities



	Methods	LVE (mm)↓	FDD (× 10^{-5} m)↓	MOD (mm)↓	BA↑	Lip Sync ↑	Style Sim ↑	Natural ↑
w/o HP	FaceFormer	9.90	16.95	2.63	N/A	2.56	2.60	2.36
		12.71	12.44	2.87	N/A	2.88	3.00	2.90
	FaceDiffuser	12.12	15.48	3.50	N/A	2.71	2.51	2.35
	Ours (no HP)	8.81	10.13	1.72	N/A	4.23	4.07	4.43
w/ HP	Yi et al.	9.99	21.50	2.42	0.26	1.94	2.02	1.99
	SadTalker	_	—	—	0.24	3.25	2.91	2.96
	S Ours	8.94	9.60	1.62	0.29	4.52	4.25	4.43
Ablations	Ours w/o \mathcal{L}_{geo}	11.29	15.11	2.14	0.28			
	Ours w/o AM	12.81	12.58	2.18	0.24			
	Ours w/o CFG	9.58	9.59	1.56	0.29			
	G Ours w/o SSE	11.33	12.97	2.03	0.28			

Please watch the demo video at the project page to see more experimental results, such as example-based style control, one-to-many generation, noisy audio, and multi-lingual results.

The choice of 3DMM parameters as the face representation

Limitations and future work

- Emotion and fine-grained control. improved.

Experiments

Quantitative Results

User Study

Discussion

• Reduce computational cost for the diffusion model

• 3DMM serves as a prior to simplify training and improve generalization • Easier integration with downstream tasks (e.g., drive a GaussianAvatar)

• Diffusion models are relatively slow. The generation speed can be further

• Modeling and animating inner mouth structure.

• Collecting real-world 3D talking data with broader coverage and diversity.